Tissue-specific activity of lipoprotein lipase in skeletal muscle regulates the expression of uncoupling protein 3 in transgenic mouse models.

نویسندگان

  • D Kratky
  • J G Strauss
  • R Zechner
چکیده

Uncoupling protein (UCP)-2 and UCP-3 are two recently discovered proteins similar to UCP-1, which regulates thermogenesis in brown adipose tissue (BAT). Whereas UCP-1 expression is restricted to BAT, UCP-2 is widely expressed. UCP-3 is found mainly in skeletal muscle and BAT. A large body of evidence exists that the expression of UCP-2 and UCP-3 in skeletal muscle of mice is regulated by feeding/fasting, and some studies have suggested that this effect might be caused by the changing concentration of plasma non-esterified fatty acids (NEFAs). In an attempt to determine whether the increased import of triacylglycerol-derived NEFAs can also affect UCP expression, we determined the mRNA levels of UCP-1, UCP-2 and UCP-3 in BAT and muscle of induced mutant mouse lines that overexpressed or lacked lipoprotein lipase (LPL) in these tissues. The expression levels of UCP-1 and UCP-2 in BAT and in skeletal and cardiac muscle respectively were not affected by variations in tissue LPL activities. In contrast, UCP-3 mRNA levels were induced 3.4-fold in mice with high levels of LPL in skeletal muscle, and down-regulated in mice that lacked LPL in skeletal muscle. The presence or absence of LPL in BAT had no effect on UCP-3 expression levels. The response of UCP-3 mRNA expression to variations in LPL activity in skeletal muscle was independent of the feeding status or of plasma NEFA concentrations. These findings indicated that NEFAs as lipolytic products of LPL-mediated triacylglycerol hydrolysis markedly affect UCP-3 expression and that increased LPL activities occurring during fasting in skeletal muscle contribute to the induction of UCP-3 expression by promoting the increased uptake of NEFAs. In addition, our results demonstrate that UCP-2 and UCP-3 are differentially regulated in response to LPL-mediated NEFA uptake in skeletal muscle of mice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Muscle-specific overexpression of lipoprotein lipase in transgenic mice results in increased alpha-tocopherol levels in skeletal muscle.

Lipoprotein lipase (LPL) has been implicated in the delivery of chylomicron-located alpha-tocopherol (alpha-TocH) to peripheral tissues. To investigate the role of LPL in the cellular uptake of alpha-TocH in peripheral tissue in vivo, three lines of transgenic mice [mouse creatine kinase- (MCK) L, MCK-M and MCK-H] expressing various amounts of human LPL were compared with regard to alpha-TocH l...

متن کامل

Increased thermoregulation in cold-exposed transgenic mice overexpressing lipoprotein lipase in skeletal muscle: an avian phenotype?

LPL is an enzyme involved in the breakdown and uptake of lipoprotein triglycerides. In the present study, we examined how the transgenic (Tg) overexpression of human LPL in mouse skeletal muscle affected tolerance to cold temperatures, cold-induced thermogenesis, and fuel utilization during this response. Tg mice and their nontransgenic controls were placed in an environmental chamber and house...

متن کامل

Induced mutant mouse lines that express lipoprotein lipase in cardiac muscle, but not in skeletal muscle and adipose tissue, have normal plasma triglyceride and high-density lipoprotein-cholesterol levels.

The tissue-specific expression of lipoprotein lipase (LPL) in adipose tissue (AT), skeletal muscle (SM), and cardiac muscle (CM) is rate-limiting for the uptake of triglyceride (TG)-derived free fatty acids and decisive in the regulation of energy balance and lipoprotein metabolism. To investigate the tissue-specific metabolic effects of LPL, three independent transgenic mouse lines were establ...

متن کامل

Reduction of plasma triglycerides in apolipoprotein C-II transgenic mice overexpressing lipoprotein lipase in muscle.

LPL and its specific physiological activator, apolipoprotein C-II (apoC-II), regulate the hydrolysis of triglycerides (TGs) from circulating TG-rich lipoproteins. Previously, we developed a skeletal muscle-specific LPL transgenic mouse that had lower plasma TG levels. ApoC-II transgenic mice develop hypertriglyceridemia attributed to delayed clearance. To investigate whether overexpression of L...

متن کامل

Human skeletal muscle PPARalpha expression correlates with fat metabolism gene expression but not BMI or insulin sensitivity.

Peroxisome proliferator-activated receptor-alpha (PPARalpha) is a key regulator of fatty acid oxidation in skeletal muscle, but few data exist from humans in vivo. To investigate whether insulin sensitivity in skeletal muscle and body mass index (BMI) were associated with skeletal muscle expression of PPARalpha and with important genes regulating lipid metabolism in humans in vivo, we undertook...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 355 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2001